ECED 3300
 Tutorial 1

Problem 1

Show that the vector components of A parallel and perpendicular to a given vector \mathbf{a}_{s} can be expressed as
(a) $\mathbf{A}_{\|}=\left(\mathbf{A} \cdot \mathbf{a}_{s}\right) \mathbf{a}_{s}$;
(b) $\mathbf{A}_{\perp}=\mathbf{a}_{s} \times\left(\mathbf{A} \times \mathbf{a}_{s}\right)$.

Solution

(a) By definition of the scalar product, $\left|\mathbf{A}_{\|}\right|=\left(\mathbf{A} \cdot \mathbf{a}_{s}\right)$ as \mathbf{a}_{s} is a unit vector. It follows at once that $\mathbf{A}_{\|}=\left|\mathbf{A}_{\|}\right| \mathbf{a}_{s}=\left(\mathbf{A} \cdot \mathbf{a}_{s}\right) \mathbf{a}_{s}$.
(b) Using the "bac-cab" formula, $\mathbf{a}_{s} \times\left(\mathbf{A} \times \mathbf{a}_{s}\right)=\mathbf{A}\left(\mathbf{a}_{s} \cdot \mathbf{a}_{s}\right)-\mathbf{a}_{s}\left(\mathbf{A} \cdot \mathbf{a}_{s}\right)=\mathbf{A}-\mathbf{A}_{\|}=\mathbf{A}_{\perp}$.

Problem 2

Given two vectors $\mathbf{A}=\alpha \mathbf{a}_{x}+3 \mathbf{a}_{y}-2 \mathbf{a}_{z}$ and $\mathbf{B}=4 \mathbf{a}_{x}+\beta \mathbf{a}_{y}+8 \mathbf{a}_{z}$, determine α and β such that
(a) A and \mathbf{B} are parallel,
(b) A and B are perpendicular.

Solution

(a) \mathbf{A} and \mathbf{B} are parallel implies that there is a constant k such that

$$
\mathbf{A}=k \mathbf{B}
$$

It follows that

$$
\alpha \mathbf{a}_{x}+3 \mathbf{a}_{y}-2 \mathbf{a}_{z}=4 k \mathbf{a}_{x}+k \beta \mathbf{a}_{y}+8 k \mathbf{a}_{z}
$$

Equating component by component yields the set of algebraic equations

$$
\begin{equation*}
\alpha=4 k ; \quad 3=k \beta, \quad 8 k=-2 . \tag{1}
\end{equation*}
$$

It follows from Eq. (1) that

$$
\alpha=-1, \quad \beta=-12
$$

(b) A and B are perpendicular, implying that

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=0 \tag{2}
\end{equation*}
$$

It follows at once from Eq. (2) and the definition of scalar product in terms of vector components that

$$
\begin{equation*}
4 \alpha+3 \beta-16=0 \tag{3}
\end{equation*}
$$

In other words, one can only say that possible values of α and β must satisfy Eq. (3).

Problem 3

Express unit vectors in the Cartesian coordinates in terms of cylindrical coordinate unit vectors.

Solution

Since $\mathbf{a}_{\rho}=\boldsymbol{\rho} / \rho$, we can simply express $\mathbf{a}_{\rho}=\mathbf{a}_{x} \cos \phi+\mathbf{a}_{y} \sin \phi$. Also \mathbf{a}_{z} is the same in both coordinate systems. As $\mathbf{a}_{\rho}, \mathbf{a}_{\phi}$ and \mathbf{a}_{z} form a right-hand set, $\mathbf{a}_{\rho} \times \mathbf{a}_{\phi}=\mathbf{a}_{z}$. It follows by a cyclic permutation that $\mathbf{a}_{\phi}=-\left(\mathbf{a}_{\rho} \times \mathbf{a}_{z}\right)=-\left(\mathbf{a}_{x} \times \mathbf{a}_{z}\right) \cos \phi-\left(\mathbf{a}_{y} \times \mathbf{a}_{z}\right) \sin \phi=-\mathbf{a}_{x} \sin \phi+\mathbf{a}_{y} \cos \phi$. Where we used the mutual orthogonality of $\mathbf{a}_{x}, \mathbf{a}_{y}$ and $\mathbf{a}_{z}, \mathbf{a}_{x} \times \mathbf{a}_{y}=\mathbf{a}_{z}$. Thus,

$$
\mathbf{a}_{\rho}=\mathbf{a}_{x} \cos \phi+\mathbf{a}_{y} \sin \phi
$$

and

$$
\mathbf{a}_{\phi}=-\mathbf{a}_{x} \sin \phi+\mathbf{a}_{y} \cos \phi
$$

Solving the last two equations for \mathbf{a}_{x} and \mathbf{a}_{y}, we arrive at

$$
\mathbf{a}_{x}=\mathbf{a}_{\rho} \cos \phi-\mathbf{a}_{\phi} \sin \phi
$$

and

$$
\mathbf{a}_{y}=\mathbf{a}_{\rho} \sin \phi+\mathbf{a}_{\phi} \cos \phi
$$

Problem 4

Express unit vectors in the spherical coordinates in terms of the Cartesian coordinate system unit vectors.

Solution

Recall that $\mathbf{a}_{r}=\mathbf{r} / r=\mathbf{a}_{x} \sin \theta \cos \phi+\mathbf{a}_{y} \sin \theta \sin \phi+\mathbf{a}_{z} \cos \theta$. We have also just determined \mathbf{a}_{ϕ}, namely

$$
\mathbf{a}_{\phi}=-\mathbf{a}_{x} \sin \phi+\mathbf{a}_{y} \cos \phi .
$$

The mutual orthogonality of $\mathbf{a}_{r}, \mathbf{a}_{\theta}$ and \mathbf{a}_{ϕ} dictates

$$
\mathbf{a}_{\theta}=-\left(\mathbf{a}_{r} \times \mathbf{a}_{\phi}\right)=\mathbf{a}_{\phi} \times \mathbf{a}_{r} .
$$

Using the mutual orthogonality of $\mathbf{a}_{x}, \mathbf{a}_{y}$ and \mathbf{a}_{z}, we obtain after little algebra,

$$
\mathbf{a}_{\theta}=\mathbf{a}_{x} \cos \phi \cos \theta+\mathbf{a}_{y} \sin \phi \cos \theta-\mathbf{a}_{z} \sin \theta .
$$

